
Theor Chem Acc (2006) 115: 334–342
DOI 10.1007/s00214-005-0060-6

REGULAR ARTICLE

Federico Moscardó · Emilio San-Fabián
Luis Pastor-Abia

The Colle–Salvetti wavefunction revisited: a comparison between
three approaches for obtaining the correlation energy

Received: 20 July 2005 / Accepted: 28 September 2005 / Published online: 2 February 2006
© Springer-Verlag 2006

Abstract The correlation factor of Colle and Salvetti is
studied by comparing the behavior of three different cor-
relation functionals. The normalization, sum rule, Coulomb
hole, correlation energy integrand, and the Wigner exclusion
hole have all been analyzed by applying the three approaches.
The results indicate that the correlation factor proposed by
Colle–Salvetti is a very good choice for modeling electron
correlation in atoms. The flaws appearing in the develop-
ment of the Colle–Salvetti equations seem mainly due to an
inadequate use of the first mean value theorem of integral
calculus. The Gaussian summation used for the two-body
density matrix seems to be a good approximation to obtain
the correlation factor equations.

Keywords Correlation energy · Correlation factor ·
Correlated wavefunction

1 Introduction

The Colle and Salvetti (CS) functional [1,2] is one of the
most celebrated formulas for the approximate estimation of
the correlation energy of atoms and molecules. It is not rig-
orously a functional of the density, but, by departing from
it, Lee, Yang, and Parr (LYP) [3] wrote an expression as
a density functional, related to a wavefunction written as a
Slater determinant, no matter it be of Kohn Sham or Hartree–
Fock (HF) class. The LYP is, by far, the most widely used
correlation energy functional for atoms’ and molecules’ cal-
culations, and all the acronyms including it, such as BLYP,
etc., are nowadays very popular in quantum chemistry.

Despite its success in density functional theory (DFT)
calculations, the CS functional shows its power when a wave-
function having more than a Slater determinant is applied to
the estimation of correlation energy. Instead, the DFT-based
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correlation energy functionals, including that of LYP, do not
work for such a many determinantal wavefunction [4–6]. This
fact hints towards the inclusion of a dependence on the re-
duced two-body density matrix (RTBDM) into the DFT cor-
relation energy functionals. This is accomplished by relating
the components of the density with the on-top two body den-
sity [7], and has been shown to be a powerful tool in molecular
calculations [8].

Although the CS functional has been widely applied in
a direct or indirect way (the paper “Development of the
Colle-Salvetti correlation energy formula into a functional
of the electron density” [3] alone has received more than
12,000 citations), it is less known from theoretical grounds.
The functions β(R), �(R), and ϕ(R, r) appearing in the CS
wavefunction, were studied in Ref. [9]. A correlation coeffi-
cient for the CS wavefunction was analyzed in Refs. [10,11].
The application to a homogeneous electron gas was done
by Mc. Weeny and coworkers [12]. The correlation energy
potential has been carefully analyzed [13]. Recently, the cor-
relation hole, sum rule, correlation energy density, and elec-
trostatic potential have been also studied [14,15]. From these
studies it follows that some important flaws are found in the
CS formalism, casting serious doubts on the physical mean-
ing of the CS wavefunction, despite the good results provided
by the CS functional for the correlation energy of atoms and
molecules.

Our aim in this paper is to elucidate the wrong behav-
ior of the CS wavefunction when describing some physical
and mathematical properties of atoms and molecules. For this
purpose a comparative analysis is made by using together the
CS formalism, a correlation energy functional due to Mos-
cardó and San-Fabián (MSF) [17] and a more recent func-
tional by Salvetti and Montagnani (SM) [16].

2 Theory

2.1 Colle–Salvetti correlation factor

The CS wavefunction is a Jarstrow class [18] written as



The Colle–Salvetti wavefunction revisited 335

�(x1, x2, . . . , xn) = �0(x1, x2, . . . , xn)

×� j i [1 − ϕ(ri, rj)] (1)

where �0 is a known reference wavefunction, usually an HF
class, and xi is the set of space (ri) and spin coordinates for
the i-electron.

By invoking the first mean value theorem of integral cal-
culus [19] [see Eq. (36)] CS puts forward

�2(r1, r2; r′
1, r′

2) = �0
2(r1, r2; r′

1, r′
2) [1 − ϕ(r1, r2)

−ϕ∗(r′
1, r′

2) + ϕ(r1, r2)ϕ
∗(r′

1, r′
2)

]

(2)

for the RTBDM. �0
2(r1, r2; r′

1, r′
2) is the reference RTBDM,

and ϕ is a space correlation function

ϕ(r1, r2) = e−β2r2
[
1 − �(R)

(
1 + r

2

)]
(3)

where R and r are the center of mass and internal vectors

R = (r1 + r2)

2
r = (r1 − r2) (4)

When we are restricted, as in this paper, to the Helium
atom, Eq. (2) follows exactly from Eq. (1). However, for many
electron systems the use of Eq. (2) may have serious conse-
quences affecting the N -representability. This problem has
been discussed by Soirat et al. [20], proposing a correction
to Eq. (2) that is exact to an order of two.

Turning to Eq. (3), it depends on the function β that, fol-
lowing the concept of Wigner exclusion hole [21], CS fixes
as

β(R) = qρ(R)1/3 (5)

Here q is a parameter related with the mass of electrons into
the correlation hole, and ρ(R) is the electron density.

The other function �(R), appearing in Eq. (3), is also a
function of β.

Assuming that the reduced one-electron density matrix
(ROEDM) satisfies �1(r, r′) = �0

1(r, r′), a sum rule for the
correlation hole holds
∫

�0
2(r1, r2; r1, r2)

[
ϕ2(r1, r2) − 2ϕ(r1, r2)

]
dr2 = 0 (6)

suggesting the expression
∫

�0
2(R, r; R, r)

[
ϕ2(R, r) − 2ϕ(R, r)

]
dr = 0 (7)

In a similar way a correlation energy can be written as

Ec =
∫

1

2
�0

2(R, r)
ϕ2(R, r) − 2ϕ(R, r)

r
dRdr (8)

From Eq. (7), and following an empirical reasoning, CS
arrives at

�CS(R) = π1/2β(R)

1 + π1/2β(R)
(9)

Moreover, this Eq. (9) can also be derived from Eq. (7).
So, neglecting the ϕ2 contribution

∫
�0

2(R, r; R, r) [ϕ(R, r)] dr = 0 (10)

and invoking the mean value theorem [see Eq. (36)]

�0
2(R, ξ ; R, ξ)

∫
ϕ(R, r)dr

= 4π

∫
r2e−β2r2

[
1 − �(R)

(
1 + r

2

)]
dr = 0 (11)

so, by integration of this equation, we arrive at the �CS(R)
expression.

In the CS paper the integrand of Eq. (8) is approximated
by a function also built on empirical grounds:

H(R)

= 0.04918

× 1+0.173
[
0.3814ρ(R)−8/3

(∇2
r ρ0

2 (R − r/2; R − r/2)
)

r=0

]
e−0.58/β

1 + 0.8/β
ρ(R)

(12)

2.2 Moscardó–San-Fabián equations

In Refs. [16,22], a model derived from that of Colle–Salvetti
was proposed. The starting equation is not a correlated wave-
function, but a directly correlated RTBDM

�2(r1, r2; r′
1, r′

2) = �0
2(r1, r2; r′

1, r′
2)

×[1 + F(r1, r2; r′
1, r′

2)] (13)

where F(r1, r2; r′
1, r′

2) is a correlation factor having the fol-
lowing properties:

F(r1, r2; r′
1, r′

2) = F∗(r1, r2; r′
1, r′

2)

= F(r′
1, r′

2; r1, r2) (14)

and

F(r1, r2; r′
1, r′

2) ≥ −1 (15)

With these definitions the possible difficulties related with
a loss of n-representability when going from Eq. (1) to Eq. (2)
are overcome1.

As in CSs paper, a cusp condition on the RTBDM is im-
posed

∂ F(R, r)

∂r

∣
∣∣
∣∣
r=0

= 1 (16)

where F(R, r) is the angular average of F(R, r).
In Ref. [16] the averaged correlation factor is taken as

F(R, r) = ϕ2(R, r) − 2ϕ(R, r) (17)

where ϕ(R, r) is that of Eq. (3), and the same transformation
of coordinates of Eq. (4) is used. Hence, Eqs. (7) and (8)
remain to be valid in this derivations.

1 These are necessary but no sufficient conditions. For a more deeper
analysis on the N -representability of the reduced density matrices see
the papers of Valdemoro [23,24], Ehara et al. [25], and Mazziotti [26,
27]
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Another remarkable feature of the model is the use of a
Gaussian summation to substitute the second-order Taylor
development made in the CS paper [1]. In this way the diver-
gences and false zeros appearing in the CS equations are not
present here. The spherically averaged reference RTBDM is
approximated by

�0
2(R, r) =

∫
�0

2(R, r)d� = 4πρ0
2 (R)e−r2/γ (R) (18)

where � stand for the set of polar angles defining the vector
r, and ρ0

2 (R) is the on-top diagonal RTBDM.
Further, an explicit expression for γ (R) is obtained

γ (R) = 1

π

[
(N − 1)

2

ρ0(R)

ρ0
2 (R)

]2/3

(19)

by imposing that the hierarchy relation between the reduced
two- and one-body density matrices be also obeyed by inte-
gration on the internal coordinates.

ρ0(R) = 2

N − 1

∞∫

0

�2(R, r)r2dr (20)

Integration of Eq. (7), using the Eq. (18), leads to

�MSF(R) = (C2
2 + 4C1C3)

1/2 − C2

2C1
(21)

with

C1 =
√

π

2a3/2 β2(R) + β(R)

a2 + 3
√

π

16a5/2

C2 = √
π

(
1

b3/2 − 1

a3/2

)
β(R)2 +

(
1

b2 − 1

a2

)
β(R)

C3 = √
π

(
1

b3/2 − 1

2a3/2

)
β(R)2

a = 2 + ρ0(R)2/3

tβ2(R)
b = a − 1

t = (N − 1)2/3

π

[
ρ0(R)2

ρ0
2 (R)

]2/3

Finally, a correlation energy functional is obtained from
Eq. (8)

Ec =
∫

εc(R)dR (22)

where the pair correlation energy density εc(R) is

εc(R) = 2(N − 1)

π1/2

ρ0(R)2

β4t3/2

×
{
φ2(R)

(
β2

2a
+ αβπ1/2

2a3/2 + α2

2a2

)

+φ(R)

[(
1

b
− 1

a

)
β2+ απ1/2

2

(
1

b3/2 − 1

a3/2

)
β

]

−
(

1

b
− 1

2a

)
β2

}
(23)

With the objective to test the mean value theorem used
by Colle–Salvetti to obtain �, we can use the Gaussian sum-
mation. Neglecting the ϕ2 contribution in Eq. (7), it is easy
to obtain an approximation to the Eq. (21), equivalent to
that of CS [see Eq. (9)] but without invoking the mean value
theorem:

�AGS = π1/2√δ(R)

1 + π1/2
√

δ(R)
(24)

with

δ(R) = β2 + γ (R)−1

2.3 Salvetti–Montagnani equations

More recently Salvetti and Montagnani have proposed a new
functional for the exchange plus correlation energy [17]. The
aim of this functional is to overcome some difficulties appear-
ing in the CS one [1] and is inspired in it, although there are
important differences that make both not so similar.

As in Ref. [16], the starting point is a correlated RTBDM

ρ2(r1, r2) = ρ(r1)ρ(r2)[1 + h(r1, r2)] (25)

where the ρ2(r1, r2) and ρ(ri) are the diagonal-reduced two-
and one-body density matrices, respectively, and h(r1, r2) is
an exchange-correlation factor written as

h(r1, r2) = ϕ2
SM − 2ϕSM

f
(26)

where

ϕSM = �SMe−βSMr2
[
1 − �SM(1 + r

2
)
]

(27)

f is a polynomial function of �SM, and

�SM = β
µ
SM

1 + β
µ
SM

(28)

with

βSM(r1, r2) = λρ(r1)
1/3ρ(r2)

1/3 (29)

The sum rule for the exchange correlation hole is im-
posed:
∫

ρ(r2)h(r1, r2)dr2 = −1 (30)

Equations (27) and (28) resemble those of CS [Eqs. (3),
(5), and (9) of this paper]; however, there are deep differences
between them; so, it is not possible to go from Eq. (27) to
(3), and Eq. (9) is not recoverable from Eq. (28).

3 Two-electron system

3.1 Sum rule

As has been pointed in Sect. 2, all the results following
are for the ground state of the helium atom. The reference
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Table 1 Value of
∫

�HF
2 (r1, r2; r1, r2)(2ϕ − ϕ2)dr2dr1 versus q , using the �CS, �MSF, and �AGS functions

q �CS �MSF �AGS q �CS �MSF �AGS

0.25 1.61863 −0.10399 −0.15001 2.25 0.02641 0.00400 0.00241
0.50 1.04280 −0.04203 −0.07314 2.29 0.02458 0.00385 0.00235
0.75 0.61355 −0.00759 −0.02733 2.50 0.01722 0.00316 0.00201
1.00 0.35013 0.00514 −0.00694 2.75 0.01151 0.00245 0.00159
1.17 0.23862 0.00737 −0.00147 3.00 0.00791 0.00193 0.00146
1.25 0.19965 0.00800 0.00033 3.25 0.00562 0.00150 0.00104
1.50 0.11528 0.00753 0.00252 3.50 0.00401 0.00119 0.00083
1.75 0.06839 0.00638 0.00290 3.75 0.00286 0.00093 0.00066
1.80 0.06195 0.00592 0.00311 4.00 0.00213 0.00073 0.00051
2.00 0.04204 0.00538 0.00279 5.00 0.00073 0.00032 0.00023
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Fig. 1
∫

ρc(r1, r2)dr2 [Eq.(31)] versus r1, for �CS, �MSF, and �AGS [Eqs. (9), (21), and (24) respectively]

wavefunction is a Hartree–Fock one built from an augmented
correlation consistent valence quintuple zeta (aug-cc-pV5Z)
Dunning’s basis set, excluding g and h shells [28,29], and
the integration has been done by numerical quadrature.

The Table 1 shows the values obtained by complete inte-
gration of Eq. (6). The results of the first column are equal
as those of Ref. [14], so that, when Eq. (9) is used, the nor-
malization of the CS wavefunction is strongly dependent on
the q value. Only for high values of q the zero is reason-
ably approached. When �MSF is used, the integral value is
approximately zero for all the rank of q’s, only for very small
q the result deviate from zero, probably due to the Gaussian
approximation.

The results collected in the last column of Table 1 are
very similar to those of the second column, making it evi-
dent that the functions �MSF and �AGS works in the same

way. Remember that the only difference in obtaining both
equations is the neglect of the ϕ2 contribution in Eq. (7).

The above results shows that the use of a Gaussian sum-
mation for the power series development around r of the
reference RTBDM seems to be a good approximation.

3.2 Coulomb hole

From Eq. (2) a Coulomb hole can be written as

ρc(r1, r2) = �0
2(r1, r2)

[
ϕ2(r1, r2) − 2ϕ(r1, r2)

]

ρ0(r1)
(31)

where ρ0(r1) is the reference density.
Results of integration of Eq. (31) on r2 are shown in Fig. 1,

these are curves depending on r1, and parametrically on q . If
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Fig. 2 Plot of the Coulomb hole through the z axis, using q = 1.17. The exact curves are those obtained by Slamet and Sahni [30]

the sum rule of Eq. (6) would be obeyed, all the curves must
be superposed along the abscissas axis. However, the curves
associated to the �CS function exhibits a strong dependence
on q , and are not linear in r1. On the contrary, curves asso-
ciated to �MSF and �AGS are less dependent on q being
grouped around the zero value. An exception is the curves
for q = 0.5.

The Coulomb hole along the z axis, together with the
exact one of (Ref. [30]), for different r1 values (0.566, 0.8,
1.0, and 1.5 Å), are shown in Fig. 2. All them are obtained
with q = 1.17, the variational value found in Ref. [20]. Such
as has been previously pointed by Singh et al. [14], when
the test electron moves to outer regions, the CS Coulomb
hole becomes worse. Contrarily, the MSF and AGS Cou-
lomb holes maintain for all the range of r1 distances, a good
resemblance to the exact ones, showing that, not only short
range correlations but also long range ones are reasonably
well depicted by the MSF or AGS Coulomb holes.

3.3 Correlation energy

The correlation energy density per electron is shown in Fig. 3.
The ε

(1)
CS, and ε

(1)
MSF are obtained dividing byρ(R) the integrand

of Eqs. (12) and (23), respectively; ε
(2)
CS, ε

(2)
MSF, and ε

(2)
AGS, are

ε
(2)
k =

∫
1

2

�0
2(R, r)
ρ(R)

ϕ2
k (R, r) − 2ϕk(R, r)

r
dr (32)

where k means that �CS, �MSF or �AGS is used to write
ϕk(R, r), respectively.

The RTBDM in Eq. (8) is that of Hartree–Fock:

�0
2(r, r′) = ρ0(r)ρ0(r′)

−1

2

∑

i

∑

j

φ0
i (r)φ0

j (r)φ
0
i (r′)φ0

j (r
′) (33)

More interesting than Fig. 3 are the values of q needed for
each of the four integrands to yield the exact ground state cor-
relation energy of the Helium atom (−0.042 Å). These values
are 2.29, 2.29, 1.80, 1.70, and 1.64 for ε

(1)
CS, ε(2)

CS, ε(1)
MSF, ε(2)

MSF,

and ε
(2)
AGS, respectively, and they have been employed in the

previous calculations. In Ref. [1], Colle and Salvetti define
an exclusion volume around an electron as

Vc =
∫

e−β2r2
dr = π3/2

β3 (34)

where β is that of Eq. (5).
According to the model, the electron mass into the hole

is m = π3/2/q3, and if any other electron must be expelled
out of the hole, this mass would be equal to 1. This implies a
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Fig. 3 Correlation energy per electron (a.u.), as a function of R

q = 1.77, very near to the values for ε
(1)
MSF, ε

(2)
MSF, and ε

(2)
AGS.

The ε
(1)
CS and ε

(2)
CS show a hole having a defect of about half

electron.

3.4 Gaussian approximation

Plots along the z axis, for the reference RTBDM of Eq. (33)
and its Gaussian approximation [Eq. (18)], are shown in
Fig. 4. Each curve is for a fixed r , and shows the pair proba-
bility as a function of R. Both functions exhibit a very similar
shape. At short inter electron distances the curves are nearly
superposed, but when r increases, the Gaussian curve con-
centrates around the origin, and the area within it decreases
more quickly than that for the RTBDM of Eq. (33). This
figure suggests that the Gaussian RTBDM is a reasonable
approximation for the reference RTBDM, having a very good
behavior in the region of short correlations.

3.5 Mean value theorem

The only approximation used to integrate the equations appear-
ing in the Salvetti and Montagnani paper [17] is that they use
the first mean value theorem of integral calculus [19]. Conse-
quently, the analysis of these equations can help the present
study. The f function of Eq. (26), was introduced in Ref. [17]
to guarantee the sum rule for the exchange correlation hole
[Eq. (30)].

In obtaining the Eq. (11) of Ref. [17], only the mean value
theorem is invoked, hence by using this equation for the exact
numerical integration of the left hand of Eq. (30), it is possi-
ble to have direct information about the goodness of the mean
value theorem application to this class of integrals. Table 2

shows, for a set of values of r1, the result of the integration.
If the f function were the exact one, the integral must have
a constant value of −1; instead, the results exhibit a strong
dependency on r1, whit values that change in a broad range.

The f function of Eq. (11) of Ref. [17] was obtained by
assuming that there is only a point (ε, τ ), where the mean
value theorem holds, and taking it as the point (0,0). To test
this assumption, we have searched for sets of points (ε, τ )
leading to the equality of Eq. (30). With this aim, two new
βSM functions are obtained for each couple of values ε, τ :

βSM(r1, ε) = λρ(r1)
1/3ρ(ε)1/3

βSM(r1, τ ) = λρ(r1)
1/3ρ(τ)1/3 (35)

The first of them is to be included into the �SM function of
Eq. (27), the other is used in evaluating the a j coefficients
appearing in Eq. (11) of Ref. [17].

Figure 5 shows that the paths along the equality of Eq. (30)
is satisfied; it appears a variety of curves depending on the
value taken for r1, hence the condition that Eq. (30) must
hold independently of r1, is not fulfilled by the f function
proposed by Salvetti and Montagnani [17].

4 More than two-electron atoms

Equation (2) is exact only for a two-electron system, such as
the helium atom; but for the N -representability to be satis-
fied by the TBDM of a many-electron system, Eq. (2) must
be adequately corrected (see the second-order term in the
work of Soriat et al. [20]). By invoking the mean value the-
orem, in the Colle and Salvetti work this correction is put to
zero, and Eq.(2) is taken for any N -electron TBDM. Tests on
atoms other than helium can aid to show the validity of this
hypothesis.
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Fig. 4 Comparison of �0
2(R, r) and its Gaussian summation functions, along R axis, for constant values of interelectronic distances r

Table 2 Normalization sum rule for the Salvetti–Montagnani exchange-correlated hole (Ixc = ∫
ρ(r2)h(r1, r2)dr2). The λ and µ parameters of

Eqs. (26) and (27) are those found in Ref. [17] (λ = 1.62 and µ = 0.46)

r1 (Å) 0.0001 0.5 0.566 0.8 1.0 1.5 2.0 3.0 4.0 5.0 6.0
Ixc −0.44949 −0.57658 −0.57880 −0.57616 −0.56939 −0.56352 −0.59060 −0.75074 −1.01704 −1.41849 −1.98212

Figure 6 shows, for the ground state of beryllium atom,
the values taken by the sum rule integral [Eq. (6)] versus
the q value, when the �CS, �MSF, and �AGS are used. For
comparison purposes, the helium results of Table 1 are also
shown. The reference wavefunction used for the beryllium
atom is a restricted HF, built with the cc-pV5Z Dunning’s
basis set, excluding g and h shells [28,29].

The relationships appearing between the results obtained
by using the Eqs. (9), (21), and (24) for the helium atom
are maintained when going to the beryllium one, but the
new curves deviate more from the exact one than those cor-
responding to Helium atom calculations. This worsening is
greater for the region of q < 1, but in this range of values,
the model losses its physical sense. For values of q bigger
than q = 1.77 (corresponding to a correlation hole having
one electron), all the curves of Fig. 6 adjust fairly well to the
exact value of the sum rule integral.

The characteristics of the results discussed for the ground
state of the beryllium atom, are maintained for a ten-electron
system, such as the ground state of neon atom. The results for
this atom are not shown here, because for little q values the
scale in Fig. 6 is not so adequate to be represented together
with those of helium and beryllium atoms.

5 Concluding remarks

The comparison of the CS, MSF, and SM functionals has put
in evidence the origin of the flaws found in preceding papers
[14,15] for the CS wavefunction [1]. The main reason is the
use of the mean value theorem of integral calculus.

The �CS function provides very bad results when applied
to the sum rule, being very sensitive to the r1 coordinate. A
consequence is the loss of normalization found in Table 1.
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�HF
2 (r1, r2; r1, r2)(2ϕ(r1, r2)−ϕ2(r1, r2))dr1dr2 versus q , using the �CS, �MSF, and �AGS functions, for helium and beryllium

atoms

Also, the correlation hole obtained with �CS exhibit a bad
behavior, inverting the trend of the exact hole when the test
electron goes to the outer regions.

The correlation energy density per electron, obtained by
using Eq. (12) together with�CS, shows an unphysical behav-
ior near the origin, and the optimal value of q for this equation,
2.29, depicts an exclusion hole having half electron.

All these results point to the above conclusion, so that,
the use of the mean value theorem seems not to be a fortunate
choice for the simplification of the integrals appearing in the
CS equations. This conclusion is reinforced by the analysis
made on the basis of the SM equations.

The Gaussian summation seems to be a satisfactory approx-
imation for the integrals containing the reference RTBDM.
All the results found in this paper point to this conclusion.
Calculations made by using �MSF, and �AGS lead to very
similar result.

The present results for the ground state of the helium
atom shows that to write �2(r1, r2; r′

1, r′
2) using the Eq. (2)

seems to be a good choice, but for a many-electron system,
this equation comes from the CS wavefunction only when the
mean value theorem is invoked. In view of the results found
in this paper, the validity of Eq. (2) for a system having more
than two electrons is a question that remains open.
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Although the mean value theorem is an ingenious device
to simplify the complicated integrals appearing in the CS
model, its application is not so easy as it seems at the first
instance. The first theorem of the mean value of integral cal-
culus [19] states that, if f (x) and g(x) are integrable over
[a, b], if m ≤ f (x) ≤ M , if g(x) ≥ 0 always or g(x) ≤ 0
always, and if f (x) is continuous, then there is at least one
ξ with a ≤ ξ ≤ b such that

b∫

a

f (x)g(x)dx = f (ξ)

b∫

a

g(x)dx (36)

It is easy to show that the theorem holds also for f (x,
y, . . .) and g(x, y, . . .) be functions of more variables, hav-
ing the same properties required above.

When the mean value theorem has been applied to the
equations of this paper, some of the properties that the func-
tions appearing in Eq. (36) must exhibit are lost. As an exam-
ple we can consider the �CS, that can be obtained form Eq. (7)
by neglecting the ϕ2 and then applying the mean value theo-
rem (see Sect. 2.1). The result is
∫

�0
2(R, r)ϕ(R, r)dr

= �0
2(R, ξ)

∞∫

0

e−β2r2
[
1 − �CS(R)

(
1 + r

2

)]
r2dr

= 0 (37)

but the integrand of the left hand side changes sign at the node,
and the theorem not applies in the rank [0,∞]. In Ref. [9]
and in the Fig. 1 of Ref. [15] the points for which the function
ϕ changes its sign are shown.
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